CIAL at IJCNLP-2017 Task 2: An Ensemble Valence-Arousal Analysis System for Chinese Words and Phrases

نویسندگان

  • Zheng-Wen Lin
  • Yung-Chun Chang
  • Chen-Ann Wang
  • Yu-Lun Hsieh
  • Wen-Lian Hsu
چکیده

Sentiment lexicon is very helpful in dimensional sentiment applications. Because of countless Chinese words, developing a method to predict unseen Chinese words is required. The proposed method can handle both words and phrases by using an ADVWeight List for word prediction, which in turn improves our performance at phrase level. The evaluation results demonstrate that our system is effective in dimensional sentiment analysis for Chinese phrases. The Mean Absolute Error (MAE) and Pearson’s Correlation Coefficient (PCC) for Valence are 0.723 and 0.835, respectively, and those for Arousal are 0.914 and 0.756, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CKIP at IJCNLP-2017 Task 2: Neural Valence-Arousal Prediction for Phrases

CKIP takes part in solving the Dimensional Sentiment Analysis for Chinese Phrases (DSAP) share task of IJCNLP 2017. This task calls for systems that can predict the valence and the arousal of Chinese phrases, which are real values between 1 and 9. To achieve this, functions mapping Chinese character sequences to real numbers are built by regression techniques. In addition, the CKIP phrase Valen...

متن کامل

THU_NGN at IJCNLP-2017 Task 2: Dimensional Sentiment Analysis for Chinese Phrases with Deep LSTM

Predicting valence-arousal ratings for words and phrases is very useful for constructing affective resources for dimensional sentiment analysis. Since the existing valence-arousal resources of Chinese are mainly in word-level and there is a lack of phrase-level ones, the Dimensional Sentiment Analysis for Chinese Phrases (DSAP) task aims to predict the valencearousal ratings for Chinese affecti...

متن کامل

LDCCNLP at IJCNLP-2017 Task 2: Dimensional Sentiment Analysis for Chinese Phrases Using Machine Learning

Sentiment analysis on Chinese text has intensively studied. The basic task for related research is to construct an affective lexicon and thereby predict emotional scores of different levels. However, finite lexicon resources make it difficult to effectively and automatically distinguish between various types of sentiment information in Chinese texts. This IJCNLP2017Task2 competition seeks to au...

متن کامل

IJCNLP-2017 Task 2: Dimensional Sentiment Analysis for Chinese Phrases

This paper presents the IJCNLP 2017 shared task on Dimensional Sentiment Analysis for Chinese Phrases (DSAP) which seeks to identify a real-value sentiment score of Chinese single words and multi-word phrases in the both valence and arousal dimensions. Valence represents the degree of pleasant and unpleasant (or positive and negative) feelings, and arousal represents the degree of excitement an...

متن کامل

MainiwayAI at IJCNLP-2017 Task 2: Ensembles of Deep Architectures for Valence-Arousal Prediction

This paper introduces Mainiway AI Labs submitted system for the IJCNLP 2017 shared task on Dimensional Sentiment Analysis of Chinese Phrases (DSAP), and related experiments. Our approach consists of deep neural networks with various architectures, and our best system is a voted ensemble of networks. We achieve a Mean Absolute Error of 0.64 in valence prediction and 0.68 in arousal prediction on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017